Computational Upscaling of Inertia Effects from Porescale to Mesoscale
نویسندگان
چکیده
We propose algorithms for computational upscaling of flow from porescale (microscale) to lab scale (mesoscale). In particular, we solve Navier-Stokes equations in complex pore geometries and average their solutions to derive properties of flow relevant at lab scale such as permeability and inertia coefficients. We discuss two variants of traditional discretizations: a simple algorithm which works well in periodic isotropic media and can be used when coarse approximations are needed, and a more complex one which is well suited for nonisotropic geometries. Convergence of solutions and averaging techniques are major concerns but these can be relaxed if only mesoscopic parameters are needed. The project is a proof-of-concept computational laboratory for porous media which delivers data needed for mesoscale simulations by performing microscale computational simulations.
منابع مشابه
Forchheimer Law in Computational and Experimental Studies of Flow through Porous Media at Porescale and Mesoscale
We propose an algorithm for upscaling of flow with inertia within a multiscale framework ranging from porescale (microscale) to lab scale (mesoscale). In particular, we solve Navier-Stokes equations over complex pore geometries and average their solutions to get flow parameters at mesoscale. For periodic geometries, this is exactly the idea of homogenization. As concerns averaging, we follow th...
متن کاملBiofilm growth in porous media: experiments, computational modeling at the porescale, and upscaling
Biofilm growth changes many physical properties of porous media such as porosity, permeability and mass transport parameters. The growth depends on various environmental conditions, and in particular, on flow rates. Modeling the evolution of such properties is difficult both at the porescale where the phase morphology can be distinguished, as well as during upscaling to the corescale effective ...
متن کاملDetermination of optimal bandwidth in upscaling process of reservoir data using kernel function bandwidth
Upscaling based on the bandwidth of the kernel function is a flexible approach to upscale the data because the cells will be coarse-based on variability. The intensity of the coarsening of cells in this method can be controlled with bandwidth. In a smooth variability region, a large number of cells will be merged, and vice versa, they will remain fine with severe variability. Bandwidth variatio...
متن کاملPermeability upscaling in fractured reservoirs using different optimized mother wavelets at each level
We use a multi-resolution analysis based on a wavelet transform to upscale a 3D fractured reservoir. This paper describes a 3D, single-phase, and black-oil geological model (GM) that is used to simulate naturally-fractured reservoirs. The absolute permeability and porosity of GM is upscaled by all the possible combinations of Haar, Bior1.3, and Db4 wavelets in three levels of coarsening. The ap...
متن کاملSingle-phase Near-well Permeability Upscaling and Productivity Index Calculation Methods
Reservoir models with many grid blocks suffer from long run time; it is hence important to deliberate a method to remedy this drawback. Usual upscaling methods are proved to fail to reproduce fine grid model behaviors in coarse grid models in well proximity. This is attributed to rapid pressure changes in the near-well region. Standard permeability upscaling methods are limited to systems with ...
متن کامل